The Regional Medical Welfare Factor Relating With The Death Rate Year-To-Year Percentage Change

Kazuya Ikenishi
School of Nursing, Aichi Kiwami College of Nursing & Ichinomiya, Aichi, Japan
Corresponding author email: k.ikenishi.t@aichi-kiwami.ac.jp

Abstract:
The purpose of this study was to clarify the relationship between mortality and data related to medical welfare factors in Nagoya city. The average length of stay and the number of person with requiring of long-term care and so on were used as data related to these factors in a region. As a result in multivariate logistic regression on incrementation or not of the mortality, the average length of stay was revealed the variable statistically significant. Therefore, for the purpose of not increasing the regional mortality, this study suggested that the appropriate treatment and nursing care were need for not extending average length of stay in the region.

Keywords: Regional Health Planning, Mortality, Length of Stay, Public Health Nursing

Introduction:
The death rate is increasing with growth in population aged in recent year. The proportion of population aged 65 or over per 10,000 rises to 24.1% and the death rate which was the number of death per 1,000 was elevated to 10.1% in 2014. However, it shouldn’t be considered that the incremental mortality was able to been interpreted with only the effect of gain aged population.

Some studies on factors which affected the mortality analyzed individual anamnesis and status of daily activity and so on. But few studies focused on regional factors for clarifying relationship with the mortality. Nakamura (2003) analyzed the relationship between the Years of Potential Life Lost (YPLL) with regional factors, and then reported increasing YPLL was related to decrease the proportion of health-checkups use statistically significant. Moreover, Takeda (2004) founded that more use of the service in long-term care insurance was correlated with extending prognoses in Japan.

These studies focused on status of medical welfare and population variable in the region, whereas didn’t analyze such ones of year-to-year percentage change. It was believed that analyzing factors in terms of the change rate on health welfare factors was necessary because rapid growth of aged population had influenced on medical welfare demand in Japan. For instance, if the number of beds didn’t increase along with rise in aged population in a region, it was thought that the regional supply of medical welfare service would be in short. Therefore, this study analyzed the number of beds and population year-to-year change for exploring the relationship with death rate.
This study aimed to clarify the relationship between the change of mortality rate which display a dichotomous variable and regional factors year-to-year percentage change such as the number of beds and population in a region. Elucidating this relevancy, this study attempted to find suggestions for not increasing mortality in Japan.

Method:

This study used the population census published by the Ministry of Internal Affairs and Communications (MIAC) and the annual report on health and welfare published by Nagoya city. Annual reports on 16 wards in Nagoya city included data sets in terms of medical welfare state since 2005 to 2013.

Nagoya city is the prefectural capital of Aichi prefecture. Aichi prefecture locates in Tokai area, Japan and the population of Aichi was approximately 7.4 million in 2015. The population of Nagoya city was approximately 2.3 million in 2015. And the manufacturing industry such as the automobile one is very active in there.

The amount of change on regional factors was a value by calculating a difference of two data in continuous years. Then, the change rate on these factors was given by computing the difference divided by the value in previous year.

Analyzing variables were the incrementation or not of death rate in a region (dichotomous variable) as outcome, and annual change rate of population, population aged 65 or over, foreigner population, number of households, average age, number of livelihood protection recipients, number of regional health promotion measures participant, number of health-checkups user, number of beds per 100,000, use rate of beds, average length of stay in hospital, number of persons requiring long-term care, number of ambulance user, number of retained motor vehicles.

The number of livelihood protection recipients was the recipient number to an entire population in a ward. As variables in terms of the number of health-checkups user, a number of examinee for gastric cancer and colon cancer were used. The data about examination for lung cancer weren’t used in this analysis, because the data had been changed the type of data since 2012. These examination for gastric cancer and colon cancer, lung cancer are for inhabitants aged 40 or over. Moreover, these examinee have been subsidized once a year. The regional health promotion measures is service which involve lectures for providing information on healthcare and supporting exchange meetings, and so on. In this study, the number of these participant was used in analysis. The number of retained motor vehicles was the sum of private car and commercial vehicle.

A person requiring long-term care qualified was had a certification of need on long-term care. The levels of long-term care need is classified 7 levels which are requiring support 1 and 2, requiring long-term care 1 to 5. The level of requiring support denotes the need of care prevention such as outpatient care service, and the level of requiring of long-term care does the need of long-term care such as regular visiting and nursing care and so on. The requiring of long-term care 5 represents highest necessity of care. This study used the total number of person evaluated requiring long-term care 1 to 5 as an independent variable.

The number of ambulance user in a region was
he difference value in continuous two years. In addition, dummy variables representing year were used.

This study used Wilcoxon rank sum test in univariate analysis at first, then multivariate logistic regression with stepwise method. In a result of univariate analysis, only variables related to change rate of mortality were analyzed with the multivariate method. The level of significance was chosen to be p < 0.10 in univariate analysis and p < 0.05 in multivariate analysis. Data analyses were performed with SAS University edition.

Results:

In a result of collecting the published data by Nagoya city and MIAC from 2005 to 2013, the sample size in this study was 144. Then, as a result of Wilcoxon rank sum test, the number of ambulance user and average age, average length of stay were founded to relate statistically significant with the incrementation or not of mortality.

These variables were analyzed with multivariate logistic regression to determine relationship with the mortality and, therefore, the average length of stay founded to be only a variable statistically significant. Moreover, the odds ratio of it was 0.920 (p=0.049). In a result of Hosmer-Lemeshow test, it didn’t accept the goodness of fit of the logistic model as poor (p=0.292).

Table 1. Results of descriptive statistics and univariate statistics

<table>
<thead>
<tr>
<th>Variable of year-to-year percentage change</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Median in increased death rate group (n=106)</th>
<th>Median in not increased death rate group (n=38)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>0.38</td>
<td>0.77</td>
<td>0.31</td>
<td>-1.50</td>
<td>4.14</td>
<td>0.28</td>
<td>0.37</td>
<td>0.252</td>
</tr>
<tr>
<td>Foreign population</td>
<td>1.14</td>
<td>3.70</td>
<td>0.81</td>
<td>-8.14</td>
<td>10.22</td>
<td>0.81</td>
<td>1.11</td>
<td>0.305</td>
</tr>
<tr>
<td>No of households</td>
<td>1.04</td>
<td>1.30</td>
<td>1.04</td>
<td>-3.69</td>
<td>7.49</td>
<td>1.04</td>
<td>1.03</td>
<td>0.705</td>
</tr>
<tr>
<td>Average age</td>
<td>0.65</td>
<td>0.41</td>
<td>0.67</td>
<td>-0.45</td>
<td>2.99</td>
<td>0.67</td>
<td>0.46</td>
<td>0.063†</td>
</tr>
<tr>
<td>Population aged 65 or over</td>
<td>3.04</td>
<td>1.70</td>
<td>2.90</td>
<td>-1.02</td>
<td>10.31</td>
<td>2.92</td>
<td>2.88</td>
<td>0.854</td>
</tr>
<tr>
<td>No of livelihood</td>
<td>8.20</td>
<td>11.71</td>
<td>6.15</td>
<td>-33.15</td>
<td>57.20</td>
<td>6.48</td>
<td>4.47</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td>protection recipients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of gastric cancer examinee</td>
<td>9.56</td>
<td>14.61</td>
<td>5.80</td>
<td>-25.77</td>
<td>47.87</td>
<td>5.75</td>
<td>6.19</td>
<td>0.286</td>
</tr>
<tr>
<td>No of colon cancer examinee</td>
<td>12.84</td>
<td>13.92</td>
<td>11.91</td>
<td>-24.98</td>
<td>51.59</td>
<td>11.91</td>
<td>11.97</td>
<td>0.498</td>
</tr>
<tr>
<td>No of participants in regional health promotion measures</td>
<td>74.83</td>
<td>403.68</td>
<td>0.90</td>
<td>-93.30</td>
<td>4239.39</td>
<td>1.38</td>
<td>-3.67</td>
<td>0.416</td>
</tr>
<tr>
<td>No of persons requiring long-term care†</td>
<td>4.75</td>
<td>2.64</td>
<td>4.65</td>
<td>-1.25</td>
<td>12.96</td>
<td>3.46</td>
<td>3.30</td>
<td>0.951</td>
</tr>
<tr>
<td>No of beds per 10,000 population</td>
<td>-0.31</td>
<td>5.76</td>
<td>-0.54</td>
<td>-15.21</td>
<td>46.81</td>
<td>-0.53</td>
<td>-0.56</td>
<td>0.309</td>
</tr>
<tr>
<td>Bed utilization rate</td>
<td>-0.80</td>
<td>5.11</td>
<td>-0.75</td>
<td>-38.30</td>
<td>25.40</td>
<td>-0.75</td>
<td>-0.65</td>
<td>0.888</td>
</tr>
<tr>
<td>Average length of stay</td>
<td>-1.36</td>
<td>5.22</td>
<td>-2.16</td>
<td>-24.61</td>
<td>18.84</td>
<td>-1.72</td>
<td>-3.31</td>
<td>0.064†</td>
</tr>
<tr>
<td>No of ambulance user§</td>
<td>110.76</td>
<td>275.23</td>
<td>156.50</td>
<td>-755.00</td>
<td>851.00</td>
<td>3.29</td>
<td>0.79</td>
<td>0.033†</td>
</tr>
<tr>
<td>No of retained motor vehicles</td>
<td>-0.90</td>
<td>0.83</td>
<td>-0.88</td>
<td>-2.85</td>
<td>1.20</td>
<td>-0.88</td>
<td>-0.85</td>
<td>0.698</td>
</tr>
</tbody>
</table>

* Wilcoxon rank sum test
† p < 0.10
‡ except for persons requiring support
§ This value is not a year-to-year percentage change, but a difference value in continuous two years.
Discussion:

This study analyzed the relationship between incrementation or not of the mortality and regional factors year-to-year percentage change. As a result, the change rate of average length of stay founded to be a significant variable. The odds ratio 0.920 was smaller than 1, that it to say, increasing the average length of stay year-to-year percentage change in a ward suggested to influence rising the risk of mortality in the same ward in Nagoya city. The average length of stay refers to a mean number of inpatient days in hospital. The public policy is underway to shorten the length of stay for the purpose of preventing excessive growth in medical expenditure is underway in Japan. However, any patients who have a more severe condition (Murata, et al. 2013), and/or dementia (Suzuki, 2009; Ono, et al. 2010) was reported such a patients hospitalized longer because of taking a long time for treatment and nursing care. The result of this study identified becoming the average length of stay longer was related withincreasing mortality. In the region with getting hospitalization longer, this study suggested that many patients taking a lot of time for treatment made the regional mortality longer. Moreover, the necessity of not extending hospitalization period was suggested for the purpose of decreasing the mortality in a region. Therefore, this study suggested that the appropriate treatment and nursing care for patients having a severe condition and/or a dementia is very important.

Conclusion:

As a result of this study, it concluded that not increasing the mortality in a region was related with not extending average length of stay.

Reference:

62(3), 83-94.