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Abstract:  

Despite the recent acceleration in the collection of information and data in the field of neuroscience, the very 

widespread neurodegenerative illness of Alzheimer's disease (AD) continues to be a major issue. The most 

frequent cause of dementia and the most common neurodegenerative illness is Alzheimer's disease (AD). 

There are currently no disease-modifying AD medications available, and our knowledge of the disease's 

causes is still limited. In the current study, we examine probable causes of AD and assess cutting-edge 

computational brain modelling techniques to better elucidate their potential involvement. In order to provide 

a mechanistic explanation of the illness, we first give an overview of the computational models for AD that 

are currently in use. We next discuss the possibility to use The Virtual Brain, an open-source, multiscale, 

whole-brain simulation neuroinformatics platform, to connect biochemical elements of neurodegeneration in 

AD with large-scale brain network modelling. Finally, we talk about how this analytical approach can help 

us better understand AD and enhance AD diagnosis and therapy. 
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Introduction:  

Alzheimer's disease (AD) or similar dementia 

affects one senior over the age of 90 every two 

minutes (Robinson et al., 2018a). This 

neurodegenerative illness has a death rate in the 

US that is higher than the combined rates of breast 

and prostate cancer (Alzheimer's Association, 

2019). Beyond the effects on the quality of life for 

patients and their families, neurodegenerative 

disorders have a significant economic cost and 

thus place a heavy burden on society. The most 

recent research from the Alzheimer's Association 

pegs the US yearly medical and care expenditures 

associated with AD at $290 billion in 2019 

(Alzheimer's Association, 2019). This amount is 

predicted to increase to $1.1 trillion by the year 

2050 (Alzheimer's Association, 2018). The same 

analysis claims that by the year 2050, early 

detection at the stage of moderate cognitive 

impairment (MCI) might prevent up to $7.9 

trillion in total medical and care expenses. The 

most prevalent form of neurodegenerative illness, 

Alzheimer's disease (AD), is becoming more 

prevalent, yet the underlying disease processes are 

still unknown (Robinson et al., 2018a; 

Alzheimer's Association, 2019). For AD, there is 

no disease-modifying medication. Despite 

significant improvements in high throughput 

computing tools and the collecting of enormous 

data sets, theoretical frameworks that connect the 

many bits of observation might attempt to derive 

unique insights about the underlying causes 

(Ritter et al., 2013; Schirner et al., 2018; Solodkin 

et al., 2018; McIntosh and Jirsa, 2019). The 

molecular, cellular, ensemble, and region levels of 

the brain's organisation are only a few examples. 

These levels of organisation in the brain also 

include interactions that are both feedforward and 
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feedback between and within each level (Solodkin 

et al., 2018). These dependencies produce 

emergent phenomena—features of the system that 

cannot be comprehended by the mere "total" of 

their parts—because they are nonlinear (Ritter et 

al., 2013). Such non-linear systems are capable of 

producing large, broad effects from little 

disturbances. Focusing on one scale might 

undervalue the emerging phenomena at other 

scales because interactions in the brain span many 

different spatial and temporal domains. While 

computational neuroscience offers mathematical 

tools for the study of organised flows on 

manifolds (McIntosh and Jirsa, 2019), integrative 

brain modelling enables the examination of these 

several scales in tandem (Schirner et al., 2018). A 

molecular knowledge of AD may provide new 

opportunities for early detection and cause-

specific therapies. Recent pharmacological 

clinical trials testing medications such as anti-

Amyloid-beta (Gilman et al., 2005; Lannfelt et al., 

2008; Winblad et al., 2012; Farlow et al., 2015; 

Sevigny et al., 2016; Vandenberghe et al., 2017; 

Panza et al., 2019), tau-protein targeting 

(Yanamandra et al (Panza et al., 2019). The use of 

theoretical and computational methods would aid 

in the creation of innovative treatments 

(Hofmann-Apitius et al., 2015; Selkoe and Hardy, 

2016; Solodkin et al., 2018). Characterizing the 

traits and mechanisms that govern emergent brain 

events will be crucial to understanding and 

treating AD, according to our hypothesis. To do 

this, a thorough understanding of current biology 

studies on AD and in-depth familiarity with 

computational brain modelling methods are 

required. The contribution of the traditional 

hallmark proteins as well as recent results on the 

Notch-1 pathway, neurotransmitters, polygenetic 

variables, neuroinflammation, and neuroplasticity 

are described in this review, which summarises 

current findings of AD pathogenesis from 

genomes to connectomics. In the second section, 

we review different prior methods for 

computational modelling of the systems 

underlying AD illness and analyse their pros and 

shortcomings. The Virtual Brain 

(www.thevirtualbrain.org), which permits 

integrating molecular signalling cascades with 

large-scale brain simulation, is described as a 

multiscale brain simulation platform in the last 

section. 

 

Rationale: 

While dementia is today a word used to describe 

someone who has (acquired) substantially reduced 

cognitive function as a result of a brain disorder, 

dementia was previously thought of as an ageing 

person's primarily physiological loss of mental 

function (Schorer, 1985). Psychiatrists had so 

compared cognitive abnormalities in young people 

(dementia praecox), which are now classed as 

schizophrenia, with dementia in elderly people 

(dementia senilis), i.e., the definition of dementia 

was based on the age at which the cognitive 

impairment developed (Kendler, 2009). Alois 

Alzheimer's finding from 1907 posed a significant 

objection to this idea. At the young age of 56, his 

patient Auguste D. exhibited the typical 

psychopathology of dementia senilis that was 

advancing quickly (Alzheimer, 1907, 1911). His 

findings of a "unique sickness" led to the 

emergence of a brand-new area of neurologic and 

psychiatric study. Comprehensive classifications 

of cognitive diseases were produced, as well as a 

variety of processes, risk factors, etiologic 

elements (i.e., underlying causes such neurotoxic 

proteins, risk-modifying genes, etc.), and risk 

factors.It was interestingly discovered much later 

in 2013 (Müller et al., 2013) that Auguste D. had 

an early-onset variation of Alzheimer's dementia, 

one of the monogenetic variants with a mutation 

in the presenilin gene 1 (PSEN1)—a really 

"strange" and uncommon illness. However, it is 

still unknown what the root cause of AD is and 

what the diagnostic criteria are. Even the 

pathology-defining biochemical findings of AD, 

represented by Amyloid-beta (A40 and A42, 

hereafter Abeta) and phosphorylation of Tau 

protein (TAU for tubulin-associated unit or by the 

Greek letter, hereafter Tau; for a review, see 

Bloom, 2014), are debatable as causes of disease 

trajectory and cognitive symptoms. However, it is 

undeniable that they were present throughout 

pathogenesis (Jellinger, 1997; Hyman et al., 2012; 

Nelson et al., 2012). 

 

Defined and Diagnostic Standards 

Nosology is the scientific field that categorises 

diseases according to their underlying processes. 

In this sense, a disease class may only be 

determined when the underlying aetiology of the 

specific disease has been determined. The 

underlying aetiology of AD and the diagnostic 

standards, however, are yet unclear. Even the 
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pathology-defining biochemical signs of AD, 

represented by amyloid-beta (A40 and A42, 

hereafter Abeta) and phosphorylation of tau 

protein (TAU for tubulin-associated unit or by the 

Greek letter, hereafter Tau; for a review, see 

Bloom, 2014), are disputed as contributors to the 

course of the disease and cognitive symptoms. But 

there is no denying that they existed throughout 

pathogenesis (Jellinger, 1997; Hyman et al., 2012; 

Nelson et al., 2012). 

Standards That Are Outlined and Diagnostic: 

The scientific area of nosology classifies illnesses 

based on the underlying mechanisms. In this 

respect, a disease class can only be established 

when the root cause of a certain condition has 

been identified. Disorders Association (NINCDS-

ADRDA) diagnosis of potential and probable AD 

only based on clinical (such as daily-life deficits) 

and cognitive criteria without further diagnostic 

examination by technology methods (McKhann et 

al., 1984). The existence and gradual course of 

cognitive impairment in two or more cognitive 

domains, including memory, as well as the lack of 

other dementia-causing factors, form the basis of 

this description. The 2011 amendment of these 

criteria added that the diagnosis of dementia 

requires impairment in daily life activities 

(McKhann et al., 2011). 

In clinical practise, a diagnosis is mostly done 

using the NINCDS-ADRDA criteria of probable 

AD and by ruling out any other possible dementia 

causes (Blennow et al., 2006). The many 

phenomenological manifestations of AD present a 

problem with this strictly symptomatic description 

(Wallesch and Förstl, 2012). Neurodegeneration 

and clinical symptoms coexist continuously. They 

might be very different from patient to patient. 

The slowly progressing amnestic variety of AD is 

the most prevalent manifestation. While memory 

problems do not appear to be predominate, it is 

very unusual for language difficulties, 

disorientation, apraxia, or neuropsychiatric 

indicators such affective symptoms to show 

initially. The anatomical susceptibility of the 

individual brain, the patient's cognitive "reserve," 

educational and social variables, and other factors 

can all contribute to this variation in phenotypes 

(Stern, 2012). The symptoms of AD and those of 

other dementias overlap, and comorbidities that 

might affect the clinical presentation further 

confound the clinical diagnosis of AD.  The 2018 

National Institute of Aging and Alzheimer's 

classification differs from the original NINCDS-

ADRDA classification. The diagnostic criteria for 

association (NIA-AA) are based on the detection 

of Abeta and Tau proteins in CSF fluid or by 

positron emission tomography (PET), as well as 

atrophy, which is a sign of neurodegeneration 

during brain imaging. To standardise biomarker 

findings in AD, the NIA-AA definition introduces 

the so-called AT(N) classification, wherein A 

stands for positive Abeta biomarkers, T for 

phospho-Tau biomarkers, and N for 

neurodegeneration markers in cerebrospinal fluid 

(total Tau burden) or atrophy seen on magnetic 

resonance imaging (MRI). Positive biomarkers are 

denoted with a plus sign (+). Since AD is not the 

only cause of neurodegeneration, N is typically 

included in parenthesis. The cognitive component 

of the illness is described separately and can be 

included in the categorization by adding the letter 

C to its extension AT(N) (C). It is not common 

clinical practise to adopt this definition; it is 

mostly meant for research (Jack et al., 2018). It is 

debatable if this definition might restrict the 

scientific community from focusing on other 

important potential variables contributing to AD, 

which could result in the absence of additional 

molecular cascades except those involving Abeta 

and Tau proteins (Gauthier et al., 2018). 

The NIA-AA definition does not take cognition 

symptoms into account in its core AT(N) 

classification, in contrast to the NINCDS-

ADRDA definition, which solely takes cognition 

symptoms into account (Jack et al., 2018). Instead 

of the phrase "Alzheimer's dementia," which 

combines both AD pathologic alterations and 

dementia syndromes, potential, more precise 

classifications may be "Alzheimer's disease with 

dementia" or "Alzheimer's disease with moderate 

cognitive impairment" (Jack et al., 2018). Despite 

the existence of research frameworks such as the 

definition of AD by dementia with A+T+N+ 

biomarkers (Jack et al., 2018) and clinical 

classification for probable AD (McKhann et al., 

1984), only examination of invasively obtained 

tissue samples from either living individuals by 

biopsy or post-mortem at autopsy can provide a 

definitive diagnosis of AD—by demonstrating the 

presence of neuritic plaques (with Abeta) or 

neurofibrill (with Tau). Due to the paucity of 

possibilities for treating the underlying cause of 

the disease, autopsy is preferable over more 

intrusive in vivo procedures for a conclusive 
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diagnosis of AD. In a meta-analysis, the rate of 

clinically confirmed AD by autopsy was 

determined with a sensitivity of 85.4% and a 

specificity of 77.7%. (Cure et al., 2014). However, 

even the most advanced, gold-standard approach 

for diagnosing AD, neuropathological analysis of 

brain tissue, frequently identifies many protein-

related pathologies, including both those that are 

characteristic of AD and those that have been 

linked to other neurodegenerative illnesses 

(Robinson et al., 2018b). Due to the lack of 

abnormalities in patients' activities of daily living, 

possible prodromal phases of dementia, such as 

moderate cognitive impairment (MCI) and 

subjective cognitive decline, do not match the 

clinical requirements for a dementia syndrome. 

Although quantifiable in MCI, cognitive 

abnormalities do not yet interfere with daily 

activities (Petersen et al., 2014). 

Neuropsychological tests cannot objectively 

assess cognitive impairments in cases of 

subjective cognitive decline, yet patients report 

cognitive abnormalities (Rabin et al., 2004). In 

certain situations, these conditions might represent 

stages in the transition from an illness to 

dementia. They might be used in conjunction with 

other elements to determine a person's likelihood 

of experiencing manifest dementia (Cheng et al., 

2017). Even in the absence of beneficial treatment 

approaches, the diagnosis is frequently a crucial 

question for patients and their families since it 

increases the predictability of the disease's 

prognosis and the creation of care plans. However, 

it is frequently unclear how much certain 

dementias and associated illnesses affect cognitive 

function (Ashraf et al., 2016; Leyhe et al., 2017). 

Prevelance & Pathophysiology:  

Numerous variables, including proteinopathies, 

vascular, and immunological alterations, are 

believed to interact in the progression of 

neurodegeneration (Robinson et al., 2018b). 

According to the American Psychiatric 

Association (2013), AD is the most prevalent 

cause of dementia, followed by vascular dementia 

and mixed dementia, which is a mixture of AD 

and vascular dementia . Lewy-body dementia and 

Parkinson's disease, in particular, are more 

common than AD in frontotemporal dementias 

and Parkinsonian syndromes (Robinson et al., 

2018aSecondary dementias connected to vascular 

alterations, immunology, infections, and other 

diseases can also cause dementia. However, this 

distinction is oversimplified because many 

secondary dementias develop as a result of 

neurodegenerative processes throughout the 

course of largely non-neurodegenerative illnesses. 

The neurodegenerative trajectory of multiple 

sclerosis in its latter stages is a well-known 

example (Bermel, 2017). 

Because there are various treatment options and 

prognoses associated with various forms of 

dementia, it is important to identify the precise 

kind of dementia. Some potential dementia causes, 

such normal pressure hydrocephalus, metabolic 

conditions, immunologic or viral causes, are 

treatable. While there are currently no disease-

modifying treatments for any primary 

neurodegenerative diseases, future treatments as 

well as existing symptomatic and more 

experimental research may benefit from 

appropriate patient stratification. This is crucial 

for techniques that use patient data to simulate AD 

processes since the final model will only be as 

specific to AD as the patients' actual (strict) 

diagnoses. The group in which the prevalence of 

dementia is rising the fastest is those over 80 years 

old (Fiest et al., 2016). Although alternative 

pathogenesis routes for AD and vascular dementia 

have been theorised, it is becoming increasingly 

clear that both illnesses share a number of risk 

factors (Love and Miners, 2016). The interactions 

of Abeta in AD with vascular factors, such as 

altered blood-brain barrier permeability brought 

on by both microvascular changes and Abeta 

deposition (Santos et al., 2017), can, however, be 

distinguished from cerebral amyloid angiopathy 

(Banerjee et al., 2020), a distinct vascular disease 

brought on by amyloid, which we will not discuss 

further here. Increased physical activity, diabetes 

mellitus, and hypercholesterinemia, which are risk 

factors for AD as well as cerebrovascular disease, 

are associated with a higher incidence of vascular 

dementia and an increased rate of cerebrovascular 

disease manifestations. (Lindsay et al., 2002; 

Larson et al., 2006) (Reitz et al., 2011; Love and 

Miners, 2016). However, it has been disputed how 

these elements moderate their effects (Santos et 

al., 2017). One theory is that vascular or mixed 

dementia is not diagnosed because microvascular 

lesions go undetected. The involvement of 
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metabolic pathways in the aetiology is another 

potential. Notably, apolipoprotein E (APOE) E4 

hetero- or monozygotic, an allele of a metabolic 

gene that also influences atherosclerosis risk, is 

the most significant genetic risk factor in the 

general population (Suri et al., 2013; Mahley, 

2016). Atherosclerosis and neurodegeneration are 

more common than ever, particularly in the 

elderly, and are likely to impact the same people 

(Rohn, 2014). Epidemiological methods have 

demonstrated that up to one-third of cases of AD 

may be prevented by addressing these modifiable 

risk factors, even though the impact of metabolic 

variables is unclear (Norton et al., 2014). 

However, this proof is based only on observation 

and population-attributable risk. This statistical 

technique identifies the percentage of a disease's 

occurrence that may be linked to a certain risk 

factor. As a consequence of an observational 

research, this index permits an evaluation of the 

effect that could follow the removal of the risk 

factor, but it prevents establishing a clear causal 

relationship between identified risk variables and 

the disease (Siegerink and Rohmann, 2018). The 

population-attributable risk would be associated to 

both mixed dementia and AD itself, for instance, 

if the definition of AD in the underlying 

observational research is unclear and includes 

other disease entities as well as AD, such as mixed 

dementia. Reducing atherosclerotic risk factors 

may therefore have an impact on people with 

mixed dementia rather than "pure" AD cases. 

Alzheimer's Disease-Related Brain Changes: 

From Genetic To Brain Network & Changes In 

Proteins:  

Rare structural polymorphisms or copy number 

variations in the genes that control Abeta 

synthesis and clearance can cause early-onset AD 

in a family. For instance, structural variations in 

the gene for the precursor protein for amyloid beta 

(APP) influence how secretases process APP after 

it has been translated, which results in an excess 

of beta-amyloid in AD with early start. The active 

element of the beta-secretase complex is made up 

of the presenilin 1 (PSEN1) and presenilin 2 

(PSEN2) genes. Processing type-I integral 

membrane proteins such as the Notch signalling 

pathway's components and the receptor tyrosine-

protein kinase erbB-4 (ERBB4) depends on it 

(Sannerud et al., 2016). Longer and more toxic 

versions of Abeta peptides result from autosomal 

dominant mutations of PSEN1 and PSEN2, which 

alter endopeptidase and carboxypeptidase activity 

(Ertekin-Taner, 2007; Lanoiselée et al., 2017). 

The pathogenesis of early-onset AD may also be 

influenced by other environmental and genetic 

variables (Sun et al., 2017). 

Contrarily, late-onset Alzheimer's disease (AD) is 

a complicated genetic condition in which both 

common and uncommon genetic variants—the 

majority of which were discovered through 

genome-wide association studies—play a 

significant etiological role. According to 

estimates, late-onset AD heritability is substantial, 

at around 50% (Pedersen et al., 2004; Ridge et al., 

2016); however, environmental influences are 

likely to be much more significant (Grant et al., 

2002; Wainaina et al., 2014). When compared to 

other complicated hereditary brain illnesses, AD's 

single nucleotide polymorphism-based heritability 

estimates are typically high, at about 25–30% 

(Cuyvers and Sleegers, 2016). Common single 

nucleotide polymorphisms account for the 

remaining 5-7% of the single nucleotide 

polymorphism-based heritability, whereas APOE 

E2/E4 polymorphisms alone account for about 

25%. (Cuyvers and Sleegers, 2016; Ridge et al., 

2016; Kunkle et al., 2019). In the last three 

genome-wide association analyses, 40 distinct risk 

loci have been found (Marioni et al., 2018; Jansen 

et al., 2019; Kunkle et al., 2019). The bulk of 

these loci have roles in the APP processing, 

microglial activation, and lipid metabolism 

pathways (Andrews et al., 2020). Notably, several 

of these loci have functionally important single 

nucleotide variations that affect how these loci are 

expressed in AD-associated cortical regions and 

are correlated with the so-called expression of 

quantitative trait loci (Kunkle et al., 2019). 

Protein Level Two Phosphorylated Tau and Abeta 

are two of the most important proteins connected 

to the pathophysiology of AD. Human protein 

beta clumps in neuritic plaques because of an 

improperly cleaved structure, which causes it to 

have (neuro-)toxic effects (Klunk et al., 2007; 

Jack et al., 2009; Villemagne et al., 2009). Both 

intracellularly and extracellularly, it is present 



Dr Debopriya Ghoshet.al/Scale-Bridging In Alzheimer's disease: Biological Underpinnings for Brain Simulation Using the 

Virtual Brain 

6479                                      International Journal of Medical Science and Clinical Invention, vol. 10, Issue 01, January 2023 

(Hardy and Selkoe, 2002; Walsh and Selkoe, 

2007; Selkoe and Hardy, 2016). It has been 

proposed that the aggregation of Abeta results in 

the hyperphosphorylation of Tau protein 

(Blennow et al., 2006). But other 

neurodegenerative conditions that are not linked to 

a buildup of a protein called abeta called 

phosphorylated Tau are also seen (Kovacs, 2015). 

In individuals who died of neurodegenerative 

illnesses at a mean age of 71 years, 

immunohistochemical analysis of brain tissue, 

which is more sensitive than conventional 

microscopical tissue inspection, showed up to 92-

100% of Tau, in contrast to Abeta with 20-57%. 

(Robinson et al., 2018b). Each participant who 

met the Standard microscopy also revealed Abeta 

and Tau in immunohistochemistry, which is an 

established clinicopathological criterion for AD 

(ADNPC, defined as the presence of Abeta 

plaques, neurofibrillary tangles, and neuritic 

plaques) (Montine et al., 2012). (Robinson et al., 

2018b). Alpha-synuclein (SNCA, linked to a 

number of Parkinson's disorders) was found in 

41–55% of patients, whereas transactive response 

DNA-binding protein (TDP-43, linked to 

amyotrophic lateral sclerosis and frontotemporal 

dementia) was found in 33–40% of patients in the 

same group of patients. (Robinson et al., 2018b). 

Therefore, "pure" AD was uncommon in this 

group since at least one additional 

neurodegenerative disease affected 65-70% of 

diagnosed AD patients (Robinson et al., 2018b). 

In the development of AD, the deposition of 

Abeta generally follows a certain spatiotemporal 

pattern. There are three general stages to the 

course (Braak and Braak, 1991, 1997; Taylor and 

Probst, 2008). Along the perirhinal and entorhinal 

cortices, stage A develops. The hippocampus 

itself, as well as surrounding areas such the 

posterior gyrus parahippocampalis, are involved in 

stage B. Neocortical regions in Stage C are 

distributed widely as well. An unsui modification 

in the processing of Abeta, controlled by, is one 

explanation for the pathogenic deposition of 

Abeta.  a collection of enzymes, including 

secretases. Here, we merely provide a quick 

summary. A transmembrane protein called APP 

has been linked to synaptic plasticity and neuronal 

development (Korte, 2019). It may be broken 

down into many subdomains. The following 

procession by the -secretase and the -secretase, 

often known as the non-amyloidogenic route, is 

one possibility (Blennow et al., 2006). Instead of 

transforming APP into Abeta fragments (with a 

helix), which may then combine to form plaques, 

this "physiological" process transforms APP into a 

protein subdomain with a helix structure 

(Blennow et al., 2006). Another "pathological" 

mechanism involves the conversion of APP to 

soluble Abeta with a -helix shape by the -secretase 

(and subsequently by the -secretase once again). 

Molecules can cluster into Abeta oligomers and 

then polymers, which become insoluble and 

deposit in the extracellular space to create what 

are known as Abeta plaques, thanks to the - 

helices. Because Abeta's insoluble form cannot be 

quantified in cerebrospinal fluid, this pathway's 

activation lowers the concentration of Abeta there 

(Blennow et al., 2006; Olsson et al., 2016). The 

activity of - and -secretase, which represents the 

imbalance between these two pathways, is thought 

to be a key factor in the pathophysiology of AD 

and is the subject of several experimental 

therapeutic approaches at the moment (Coric et 

al., 2012; Tong et al., 2012; Ortega et al., 2013; 

Hsiao et al., 2019; Xia, 2019). The notch receptor 

1 (NOTCH1) pathway is another crucial 

component that is connected to both brain 

development and the protein metabolism of Abeta. 

As a transcription factor for both its intracellular 

and external domains, NOTCH1 is a membrane 

protein that has a significant impact (Brai et al., 

2016). The -secretase, which is also engaged in 

the amyloidogenic and non-amyloidogenic 

pathways of APP processing, processes NOTCH1 

to its subdomains (Brai et al., 2016). Co-substrates 

in the extracellular domain of the -secretase are 

APP and NOTCH1 (Marathe and Alberi, 2015; 

Brai et al., 2016). Abeta plaques include 

NOTCH1, and AD patients have decreased 

intracellular signalling of this protein (Brai et al., 

2016). 

The degenerative process of so-called primary 

tauopathies may be significantly influenced by 

phosphorylated Tau in the absence of any other 

neuropathological variables in a number of 

dementias. This category consists of conditions 

such as Pick's disease, corticobasal degeneration, 
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and progressive supranuclear palsy (Cope et al., 

2018). (Kovacs, 2015). In contrast, Tau appears to 

be implicated in the development of secondary 

tauopathies only in the presence of additional 

variables, such as in prion disorders and chronic 

traumatic encephalopathy (Kovacs, 2015). From 

this perspective, AD is special because it neither 

qualifies as a primary tauopathy (since Abeta is 

present concurrently) nor does the amyloid 

pathology finally result from 

hyperphosphorylation of Tau. But phosphorylated 

Tau density rather than Abeta buildup is a stronger 

predictor of the degree of cognitive impairment 

(Riley et al., 2002; Bennett et al., 2005). As a 

result, there is debate about Tau protein's 

significance in AD as either a cause of the illness 

on its own or as a sign of general 

neurodegeneration brought on by the neurotoxic 

effects of amyloid accumulation. There are now 

active clinical studies for AD patients using anti-

Tau antibodies and vaccinations, modulators of 

Tau aggregation, and antisense oligonucleotides 

targeting its gene, the microtubule associated 

protein tau (MAPT). The pathophysiology of tau 

protein is complex and connected to several 

neurodegenerative disorders (Kovacs, 2015; Guo 

et al., 2017; Cope et al., 2018). According to 

Spires-Jones et al. (2017), certain types of 

neurodegeneration cause Tau to accumulate and 

be detectable in the cerebrospinal fluid 

(Ossenkoppele et al., 2015). A number of kinases 

generally keep the phosphorylation homeostasis of 

the Tau protein in check. Tau loses its natural 

ability to stabilise microtubules as a result of a 

shift in this balance toward hyperphosphorylation, 

which is followed by altered vesicle transport in 

the axons, which disrupts axonal signal 

transmission. Second, the hyperphosphorylated 

Tau protein polymerizes to form the so-called 

neurofibrillary tangles, which are large tubular 

aggregates and intractable filaments. These 

aggregates cannot be removed by the brain's 

clearing mechanism, which causes inflammatory 

reactions and, eventually, neuronal death 

(Blennow et al., 2006). Three techniques have 

been used to observe these phenomena: I nuclear 

imaging techniques that track Tau protein 

(flortaucipir PET), (ii) an increase in the 

concentration of the hyperphosphorylated Tau 

section in the cerebrospinal fluid, and (iii) 

microscopy of neuronal tissue with neurofibrillary 

tangles (Cope et al.,2018). Tau causes the two 

primary impacts of neuronal death and axonal 

malfunction, which cause the damaged areas of 

the brain network to become disconnected. This 

has been determined in areas where flortaucipir 

PET tracking the Tau protein has strong binding 

(Cope et al., 2018). Nevertheless, the Tau protein 

is a more accurate diagnostic marker for the 

degree of cognitive loss in AD than Abeta 

(Degerman Gunnarsson et al., 2014). Network 

disruption and a rise in the clinical score of the 

apathetic symptoms are two factors that the local 

neurotoxic effects of Tau are associated with 

(Kitamura et al., 2018). Similar to Abeta stages, 

the phases of Tau deposition (determined by post-

mortem histological criteria) are known as Braak 

Tau deposition stages (Braak and Braak, 1991, 

1997; Braak et al., 2006). They constitute a 

distinctive spatiotemporal pattern throughout 

typical AD. Due to this, early Tau depositions in 

the medial temporal lobe are present in the 

majority of people with "classic" AD years before 

symptoms appear. Stages I and II make up the so-

called transentorhinal stage, which is concerned 

with the entorhinal cortex in the lamina granularis 

externa and the transentorhinal cortex in the 

ventromedial temporal lobe (Lamina II). 

Following this prodromal stage, the disease 

spreads deeper into the limbic lobule (stages III 

and IV, mostly affecting the hippocampus and 

temporal allocortex), and then into the neocortex 

(stages V and VI) (Braak and Braak, 1991, 1997; 

Braak et al., 2006). There is a strong association 

between the six phases of this Tau deposition 

diffusion process, which are divided into three 

functional stages (transentorhinal/entorhinal, 

limbic, and neocortical), and the individual 

cognitive deterioration of an AD patient (Riley et 

al., 2002; Bennett et al., 2005). In this first 

functional group, there are just a few amyloid 

plaques and frequently no clinical signs. A MCI, 

which frequently progresses to the complete 

clinical manifestation of dementia and, as a result, 

has a substantial link to higher Braak Tau 

deposition stages, characterises the non-obligatory 

prodromal stage of AD (Riley et al., 2002; Bennett 

et al., 2005). Memory function, verbal fluency, 
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and deficits in daily living activities are only a few 

examples of the clinical symptoms of MCI stage 

that are closely correlated with Tau deposition in 

the limbic stage (Riley et al., 2002). The majority 

of patients exhibit amnestic impairment at the 

highest functional stage, which is related to the 

neocortex (Braak and Braak, 1991, 1997;Taylor 

and Probst, 2008). The accumulation of Tau 

proteins detected by flortaucipir PET also 

corresponds with the clinical presence of MCI, 

AD, and cognitive function (Cho et al., 2016). 

Although there appears to be a strong correlation 

between the above-described patterns of amyloid 

and tau deposition, it is important to note that the 

three stages of amyloid deposition identified by 

Braak and Braak (Braak and Braak, 1991, 1997; 

Taylor and Probst, 2008)—A, B, and C—do not 

exactly correspond to the stages I–VI of tau 

deposition. The ventromedial temporal 

allocortices, pro-isocortices, and later 

temporoparietal neocortices are among areas 

where the six phases of Tau deposition overlap 

with the stages of amyloid deposition and follow a 

tighter distribution pattern The consequences of 

both illnesses vary more dramatically, for 

example, in how specific they are to Alzheimer's 

disease, neurodegeneration in general, or 

cognitive abilities (Van Hoesen and Solodkin, 

1994). However, the damaged cognitive domains 

of AD (memory and visuoconstruction) are 

connected to those regions because of the same 

"macro sequence" of the archicortex—

mesiotemporal cortex—temporoparietal 

neocortex. 

The cholinergic and glutamatergic transmitter 

systems are of particular relevance in the 

pathophysiology of AD. One of the vital 

neurotransmitters in the brain is acetylcholine. A 

basic transmitter in the peripheral vegetative 

nervous system and neuromuscular transmission, 

acetylcholine has a variety of multifaceted 

activities. A lot of functioning systems in the brain 

use acetylcholine, but it plays a key role in 

modulating synaptic communication (Van der Zee 

et al., 2011). Because acetylcholine is necessary 

for memory consolidation, the malfunctioning of 

the cholinergic system is related to the aetiology 

of AD (Ferreira-Vieira et al., 2016). Anti-

dementia medications act as acetylcholine esterase 

inhibitors, increasing the amount of acetylcholine 

in the synaptic gap and resulting in marginally 

enhanced memory performance (Ferreira-Vieira et 

al., 2016). Through the augmentation of synaptic 

modification and the selective presynaptic 

regulation of synaptic transmission in various 

locations and layers, cholinergic effects have been 

demonstrated to be involved in learning processes 

in the hippocampus formation (Hasselmo and 

Schnell, 1994). Acetylcholine's positive effects on 

memory encoding are likely mediated by 

enhanced afferent input, spiking activity, and 

synaptic change (Hasselmo, 2006). Working 

memory for new stimuli has been connected to 

cholinergic modulation on a functional level 

(Hasselmo and Stern, 2006). According to a 

theory (Hasselmo and Stern, 2006), previously 

familiar stimuli (such words or numbers) have 

synaptic connections, which renders working 

memory of these stimuli independent of 

cholinergic regulation (Crow and Grove-White, 

1973; Broks et al., 1988). Additionally, 

acetylcholine has a role in AD excitability 

modulation. While medial temporal lobe areas 

such as the hippocampus and gyrus 

parahippocampalis can be activated during task 

functional MRI to correlate with memory 

performance, it has been demonstrated that greater 

recruitment of such regions is linked with 

cognitive deterioration in MCI patients (Dickerson 

et al., 2004). The underlying theory proposed that 

hippocampus shrinkage might have a 

compensating impact on hyperactivation 

(Dickerson et al., 2004). Similar to this, several 

years before the expected disease onset of familial 

AD, task functional MRI in PSEN1 mutant 

carriers who were cognitively still unimpaired 

showed greater activity in the right anterior 

hippocampus relative to non-carrier controls 

(Quiroz et al., 2010). This may be understood in 

light of how cholinergic suppression affects 

learning. The phenomenon of exponential growth 

in the strength of synaptic connections, brought on 

by activity developing across previously stronger 

synapses, is known as runaway synaptic 

modification (Hasselmo, 1994). Although it may 

be viewed as a natural outcome of Hebbian 

principles (Morris, 1999), it interferes with 

learning processes since only a certain subset of 
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connections should be reinforced (the pattern to 

learn), and other existing strong connections 

should stay stable (Hasselmo, 1994). During 

learning, cholinergic presynaptic regulation of 

transmission along associative fibres provides a 

defence against runaway synaptic alteration 

(Hasselmo and Bower, 1992). However, the 

introduction of hyperactivity in AD causes more 

uncontrolled synaptic remodelling. In turn, the 

strengthening of undesirable networks can also 

cause additional hyperactivity, creating a vicious 

cycle (Hasselmo, 1994). Additionally, the ongoing 

presence of hyperactivation may have excitotoxic 

consequences (Hynd et al., 2004). Excitotoxicity 

is the term used to describe the harmful effects of 

calcium brought on by an abrupt increase in 

glutamatergic transmission. A wide range of 

genetic and environmental AD risk variables that 

are linked to greater plasticity have further 

bolstered Ashford and Jarvik's hypothesis from 

1985 that highly neuroplastic connections have a 

preferential affinity for neurofibrillary tangles 

(Mesulam, 2000). Additionally, the idea of 

excitotoxicity is crucial for other transmitter 

systems, like as glutamate. Memantine, an N-

methyl-D-aspartate (NMDA) receptor antagonist, 

and other anti-dementia medications that do not 

block acetylcholine esterase diminish 

glutamatergic transmission in the synaptic cleft. 

Neuroinflammation and plasticity are also 

connected to glutamatergic dysfunction.  

Neuroimmunology: 

Neuroinflammation and autoimmunity have a 

significant role in AD pathogenesis in addition to 

the cascades of Abeta and Tau. The fact that 

intrinsic proteinopathic malfunction alone does 

not always result in neurodegeneration and 

cognitive loss is one of the challenges in 

understanding AD pathophysiology. As was 

previously said, several hazardous intermediate 

pathways are more likely to be the source of such 

deficits. Neuroinflammation is one potentially 

significant but poorly understood process. 

Because it always comes last in the pathogenic 

cascade and directly causes neuronal death, 

neuroinflammation is an important element in the 

pathophysiology of dementia (Heneka et al., 

2015a). The control of inflammation's potential 

impact on the neurodegenerative process is 

unclear, though. Contradictory findings have been 

found in clinical trials. For instance, long-term use 

of non-steroidal anti-inflammatory medications 

shown beneficial preventative benefits, hence 

lowering the a priori risk for AD (Wang et al., 

2015). However, unlike those observational 

studies, prospective trials using steroids and other 

immunosuppressive medications, as well as 

randomised controlled trials using non-steroidal 

anti-inflammatory medicines, failed to 

demonstrate any appreciable effects 

(Jaturapatporn et al., 2012). As long as the tumour 

necrosis factor inhibitor etanercept was well 

tolerated, a case-control study in patients with 

rheumatoid arthritis (who have a slightly higher 

risk for AD) revealed a significant reduction of 

AD incidence by 70% (adjusted Odds ratio of 

0.30, p = 0.02) if the patients received treatment 

(Butchart et al., 2015). The label of AD may 

conceal a significant portion of 

autoimmunological brain events that may be 

treated with high-dose and prolonged 

corticosteroid therapy since the cause of dementia 

and its differential diagnosis are frequently 

uncertain (Pruss and Lennox, 2016). Microglia, an 

immune cell type with organ-specificity, play a 

key role in the complicated field of cerebral 

immunology. A suitable discussion would be 

outside the scope of this study, thus we would like 

to direct the interested reader to the review on 

neuroimmunology and AD below (Heneka et al., 

2015c). 

Magnetic resonance imaging of the human body 

An approach that is frequently used to search for 

biomarkers in vivo is imaging MRI. According to 

what has been said, the pathogenetic pattern of 

AD is characterised by the buildup of amyloid 

plaques and neurofibrillary tangles. The location 

and degree of neurofibrillary tangle buildup have 

been found to correlate with the volumetric 

evaluation of grey matter loss in MRI (Csernansky 

et al., 2004; Whitwell et al., 2008). Consequently, 

a proxy assessment for the regional neurofibrillary 

tangle burden may be obtained using volumetric 

MRI (Persson et al., 2017). Memory-related 

tissues, including as the hippocampus and other 

mesiotemporal regions, as well as the precuneus, 

cingulate, and the prefrontal areas, have 

repeatedly been observed to atrophy in AD 

patients (Braak and Braak, 1991; Frisoni et al., 

2002; Karas et al., 2004; Shiino et al., 2006; 

Rosenbloom et al., 2011). However, up to 30% of 
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AD patients first exhibit non-amnestic symptoms 

such aphasia, visuospatial issues, or behavior-

predominant dysfunction (Koedam et al., 2010; 

Dickerson et al., 2017). In individuals with an 

unusual clinical presentation, the distribution of 

neurofibrillary tangles is either limbic-

predominant, hippocampal-sparing, or not 

documented, which is also known as the no-

atrophy or minimal-atrophy AD variation (Murray 

et al., 2011; Persson et al., 2017). These 

phenomenological categories of AD and 

volumetric MRI have already been shown to be 

correlated (Whitwell et al., 2012). MRI was 

investigated in several studies as an in vivo 

marker of different AD subgroups (Byun et al., 

2015; Hwang et al., 2016; Ferreira et al., 2017; 

Persson et al., 2017).Additional to the atrophy 

patterns. A few single-region-based volume 

decreases have also been discovered as possible 

biomarkers for AD, in addition to phenotypic 

variations in AD morphology. The use of MRI as 

a non-invasive in vivo assessment allows for the 

longitudinal monitoring of AD atrophy and 

disease development. Volume loss in AD patients 

was the subject of recent longitudinal research 

(Harrison et al., 2019; Pontecorvo et al., 2019; 

Sintini et al., 2019). The temporoparietal areas 

have the highest rates of atrophy, which are also 

regions with lower baseline grey matter volume 

(Sintini et al., 2019). 

White matter hyperintensities, which show up on 

T2-weighted or fluid-attenuated inversion 

recovery MRI scans, are also quite common in 

AD patients in addition to grey matter atrophy 

(Brickman, 2013). Generally speaking, white 

matter hyperintensities can be morphological 

indicators of microvascular lesions as well as 

inflammatory or general ageing alterations. Prior 

to the expected start of AD symptoms, an 

increased total hyperintensity volume has been 

noted between 6 and 22 years (Lee et al., 2016). 

Research on the connection between white matter 

hyperintensities and AD pathogenesis is still 

ongoing (Graff-Radford et al., 2019). Tomography 

using positron emission Nuclear imaging 

techniques enable the in vivo collection of the 

brain's metabolic characteristics using a variety of 

radioactively labelled tracer molecules, or 

radionuclides. A unique opportunity for various 

functional evaluations of the brain is provided by 

PET. The underlying process takes use of +-

emitters: the tissue's electrons and the positrons 

released during -decay engage in a reaction known 

as annihilation. Photons are emitted as a result, 

and they may be monitored by certain sensors 

(Phelps, 2000). According to Clark et al. (2011) 

and Schöll et al. (2016), both Abeta and Tau 

deposits may be indirectly identified by PET and 

match the underlying pathologic alterations at 

autopsy well. Tau tracer binding is up in the 

cortex generally in AD, in addition to being 

elevated in areas that are known to be impacted in 

the early stages of the disease (Cho et al., 2016; 

Schöll et al., 2016; Kitamura et al., 2018; Gordon 

et al., 2019; Harrison et al., 2019). (Cho et al., 

2016; Pontecorvo et al., 2019). Tau binding, 

however, is additionally detectable in healthy 

individuals and is mostly seen in regions that have 

undergone atrophic alterations (Harrison et al., 

2019). Similar to this, Abeta tracers demonstrate 

greater global deposition throughout the whole 

brain (Clark et al., 2011; de Wilde et al., 2018) 

and in areas of the early Braak stage (Murray et 

al., 2015). (Alongi et al., 2019). However, 

compared to Tau, the proportion of "Abeta-

positive" healthy controls appears to be larger. 

The evaluation of energy metabolism using tagged 

glucose molecules is a crucial PET test. Numerous 

investigations (Meltzer et al., 1996; Langbaum et 

al., 2010; Morbelli et al., 2010; Fukai et al., 2018; 

Ou et al., 2019) imply temporoparietal 

hypometabolism in AD, which is already a 

recognised marker for ambiguous instances of 

various dementias in clinical practise. 

Interestingly, hypometabolism strongly correlates 

with Tau deposits, resembling atrophy patterns 

(Csernansky et al., 2004; Whitwell et al., 2008). 

(Adams et al., 2018). Due to its high price, 

exposure to ionising radiation, and poor sensitivity 

in identifying MCI patients who would develop 

AD, glucose PET has a limited role in ordinary 

clinical practise (Smailagic et al., 2015).  

 

Connectomics: 

Following a discussion of current developments in 

AD molecular research at the microscopic level, 

we take a look at a whole-brain viewpoint at the 

macroscopic level of brain regions. The 

connectomic method is a branch of neuroscience 

that examines, characterises, and employs 

measurements of the brain's (axonal) connection 

(Fornito et al., 2015). It gives an overview of the 

symptoms of AD and reveals universal 

phenomena that go beyond localised impairment. 
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Brain networks often consist of nodes that 

represent areas and links or edges that signify 

relationships between them (either structural or 

functionalThe degree of abstraction here is The 

connectome may be measured using graph-

theoretic metrics, or network metrics (Bullmore 

and Sporns, 2009). The AD networks differ from 

healthy controls in a variety of various—and 

sometimes interdependent—metrics. There are 

heterogeneous results for several measuring 

modalities, suggesting that AD disrupts networks 

on a variety of scales (Dennis and Thompson, 

2014; Stam, 2014). Additionally, differing 

network creation methodologies, such as varying 

criteria for filtering out the most crucial links, 

might explain this variation (van Wijk et al., 2010; 

Tijms et al., 2013; van den Heuvel et al., 2017). In 

contrast to healthy ageing, however, convergent 

evidence points to aberrant white matter structural 

connectivity and aberrant functional connectivity 

in AD. Reviewing and comparing the most recent 

research on the subject, we find that AD patients' 

networks communicate less effectively than those 

of healthy controls due to a variety of local 

network alterations. The viewpoint offered by 

connectomic research is crucial for 

comprehending how cognition grows and how it 

deteriorates in dementia. Numerous theories 

concerning the network alterations in dementia 

that emphasise distinct elements of 

neurodegeneration are available (Dennis and 

Thompson, 2014). The loss of neurons and small-

scale connectivity affects the macro-scale in the 

form of (structurally and functionally) 

disconnected brain regions, according to one line 

of study on dementia (Brier et al., 2014a) 

(Delbeuck et al., 2003; Stam, 2014). According to 

Stam (2014), this gap was associated with 

behavioural and cognitive deterioration, and white 

matter pathology in some regions may serve as a 

biomarker for the development of the illness 

(Solodkin et al., 2013). This understanding of AD 

as a disconnection syndrome was able to 

coherently connect several disease pathology 

scales. However, in recent years, network science 

research on AD patients have broadened this 

picture. These studies have seen extensive 

increases and reductions in connectivity within the 

brain network, suggesting compensating 

mechanisms or network responses beyond 

disconnection (Stam, 2014). Even a pioneering 

research that stressed the significance of "small 

networks studies," particularly in relation to the 

early stages of illness, demonstrated how the 

entorhinal cortex degeneration that precedes the 

onset of hippocampal detachment from its cortical 

network connections. Hubs are brain areas that 

have a high degree of connection to other regions, 

according to network science. Hub regions have 

consistently been identified as the areas most 

impacted by AD for both structural and functional 

connectivity investigations (Stam et al., 2009; Lo 

et al., 2010; Yan et al., 2018). Hubs were defined 

as nodes with the highest betweenness centrality 

(a measure for involvement in important 

pathways) and the highest participation coefficient 

(in how far the node is connected to different 

modules or subnetworks), and De Brier et al. 

demonstrated that hubs are disrupted even in 

preclinical stages of AD (Brier et al., 2014b). The 

increased Abeta load in certain hub locations is 

correlated with the vulnerability of hubs (Cope et 

al., 2018). The default mode network, a massive 

network of densely linked areas in resting state, is 

the centre of the disconnection in AD (iftçi, 2011; 

Hahn et al., 2013; Dai et al., 2014, 2019; Bernard 

et al., 2015; Chen et al., 2016; Cope et al., 2018). 

The degree of default mode network disruption 

allows for some differentiation between AD and 

healthy ageing, even if this phenomena is also 

seen in ageing (Perry et al., 2015). (Greicius et al., 

2004). Regarding the functional network, AD-

related neurodegeneration specifically targets the 

default mode network, which is also where the 

most Abeta is deposited (iftçi, 2011; Hahn et al., 

2013; Dai et al., 2014, 2019; Bernard et al., 2015; 

Chen et al., 2016). The degree of hub disruption is 

highly correlated with a patient's level of cognitive 

function (Dai et al., 2014). The propagation of the 

degenerative cascade within the brains of AD 

patients is thus anticipated to be facilitated by 

hubs, given their high Abeta deposition and 

crucial location in the overall information flow of 

the brain network (Buckner et al., 2009). The 

insula (Chen et al., 2013), posteromedial cortex 

(Xia et al., 2014), medial temporal cortex 

(Burggren and Brown, 2014), and amygdala 

(Burggren and Brown, 2014) have all shown 

abnormal or impaired functional connectivity 

(Yao et al., 2013; Wang et al., 2016). In addition 

to the hubs' susceptibility, a lower global 

clustering coefficient has also been observed, 

indicating a loss of connectivity and significant 

redundancy structures for brain communication in 
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FC, which therefore changes the modular structure 

of AD patients (Brier et al., 2014b; Minati et al., 

2014; Pereira et al., 2016; Dai et al., 2019). 

Decreased global efficiency in structural 

connection as well as functional connectivity 

networks is frequently seen in AD patients, which 

corresponds with cognitive and behavioural 

deterioration. This is likely a global impact of 

these "local attacks" on the network (Lo et al., 

2010; Reijmer et al., 2013; Dai et al., 2019). In 

network science, global efficiency is described as 

the inverse of the typical path length; the 

information flow inside a network is more 

efficient when there are fewer paths connecting 

the nodes. Although they are longer and have 

more nodes and edges in between, connections 

between nodes in a less efficient network are still 

possible (Bullmore and Sporns, 2009). Recent 

research examined the effects of AD using many 

imaging modalities, including 

magnetoencephalography, functional MRI, and 

diffusion tensor imaging (Guillon et al., 2019). 

They discovered that the hubs, which are most 

likely to be situated in the centre of this multilayer 

network, have been most negatively impacted, 

demonstrating the susceptibility of hubs across 

modalities. Together, these alterations allowed 

researchers to forecast patients' cognitive and 

memory decline (Guillon et al., 2019). Recent 

research indicates that network alterations, such as 

widespread disconnection, are prevalent in the 

preclinical stage of AD (Brier et al., 2014b; 

Daianu et al., 2015; Zhao et al., 2017). To better 

distinguish between AD patients, MCI, and 

controls, functional connectivity and structural 

connectivity are now being studied. This is a step 

toward the objective of identifying prodromal AD 

patients and the potential for early intervention 

techniques (Phillips et al., 2015; Pereira et al., 

2016; de Vos et al., 2018; Ye et al., 2019). 

According to a new study, preclinical AD has 

disrupted functional connectivity that corresponds 

to accelerated ageing (Gonneaud et al., 2020). 

White matter diffusion tensor imaging and resting-

state functional MRI studies have found that AD 

patients had less effective network connectivity 

than healthy older adults, particularly in the 

default mode network. 

 

Alzheimer's disease Modelling: 

Numerous models have been created for the 

analysis of AD since it is a complex disease that 

affects many different scales, including animal 

disease models (Saito et al., 2014; Weintraub et 

al., 2014), cognitive models (Sevush et al., 2003), 

and disease progression and classification models 

(Bhagwat et al., 2018; Khanna et al., 2018; Koval 

et al., 2018; Pellegrini et al., 2018; Golriz Khatami 

et al., 2019). An innovative and adaptable 

scientific idea, mathematical modelling is a key 

computational neuroscience tool. In general, one 

may distinguish between methods that concentrate 

on certain components of the illness, such as 

biochemical Abeta modelling (George and 

Howlett, 1999), and integrated models that include 

various biomarkers while concurrently employing 

several scales (Khanna et al., 2018). The latter 

may offer a more thorough, multimodal 

perspective on the illness and its interrelated 

mechanisms, and may be more suited to capture 

disease aetiology. This multiscale strategy, also 

known as "integrative disease modelling" 

(Younesi and Hofmann-Apitius, 2013), combines 

genetic data analysis with cerebrospinal fluid 

collection and functional and structural 

neuroimaging approaches (Golriz Khatami et al., 

2019). To create innovative models for AD that 

incorporate many dimensions, modalities, and 

study fields, a thorough grasp of both the 

underlying biological processes of AD and the 

computational framework of high-performance 

modelling techniques is required. This cross-

disciplinary approach has the potential to resolve 

some of the mysteries surrounding AD 

pathogenesis that might not be revealed on a 

single scale using a single method due to the 

growing technical possibilities for high-

performance computing and hierarchically 

organised knowledge architectures. As a result, we 

discuss current computational (brain) models at 

various dimensions in the parts that follow and 

explain how they relate to the biological ideas 

we've just covered.  

When used to linear classification problems, 

statistical prediction models serve primarily as 

descriptive tools. Based on the input data, subjects 

are categorised into one of three diagnostic groups 

(HC, MCI, or AD). But in addition to their 

usefulness in clinical translation as diagnostic 

tools, prediction models offer some decision 

criteria that may also be useful for comprehending 
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the underlying illness processes (Jack and 

Holtzman, 2013). There are techniques like 

machine learning (Moradi et al., 2015; Pellegrini 

et al., 2018) or Bayesian modelling in addition to 

those somewhat oversimplified linear models 

(Khanna et al., 2018). Regarding data analysis and 

model interpretation, each person has unique 

difficulties and benefits (Poil et al., 2013). In 

order to anticipate illness trajectories (predictive 

modelling) or categorise people into groups with a 

large number of extremely comparable data 

points, machine learning techniques are used 

(discriminative modelling or clustering). The 

second objective can be accomplished either by 

unsupervised clustering without labelling or by 

supervised a priori labelling of the training data 

(e.g., as two classes AD and non-AD or as a three-

class issue with AD, MCI, and healthy controls) 

(Golriz Khatami et al., 2019). These unsupervised 

discriminative models group individuals according 

to how closely related or dissimilar two 

parameters are. Statistical proximity metrics can 

be used to quantify this (Bock, 2005; Golriz 

Khatami et al., 2019). Structural T1-weighted 

MRI has been regarded a feature for traditional 

machine learning methods like support vector 

machines—often paired with linear discrimination 

analysis—along with other biomarkers. While 

patients with AD could be distinguished from 

controls with success, Pellegrini et al. (2018) 

revealed in a review that the categorization of 

participants with MCI remained inadequate 

(Pellegrini et al., 2018). This was equally true for 

the risk assessment of MCI to AD conversion. 

Because it is already possible to differentiate 

between controls and AD based on cognitive 

ability in practise, the therapeutic value of the 

classifiers remains comparatively low. Therefore, 

a diagnosis before the start of clinically apparent 

AD is currently lacking. Building biologically 

informed models that provide "mechanistic 

biomarkers" in an effort to facilitate early AD 

prediction involves a greater knowledge of AD 

pathomechanisms (Selkoe, 2004). To do so, 

physiologically plausible predictions are derived 

and a comprehensive illness knowledge system 

(i.e., ontology) may be constructed from various 

data sources. This is in contrast to the methods 

mentioned above, which rely the selection of 

biomarkers mostly on statistical reliance (e.g., 

correlations). However, mechanistic biomarkers 

resemble physiologically viable notions rather 

than only correlating with the illness. Biological 

causes of the change from asymptomatic phases of 

MCI to AD have been computationally recreated 

using this method to produce a more precise risk 

prediction (Khanna et al., 2018). Several 

biological risk variables and their interactions 

might be retrieved by employing a predictive 

time-to-event model that includes multimodal data 

including genetic variations, neuroimaging, and 

neuropsychological tests (Khanna et al., 2018). 

The model (Khanna et al., 2018) uses a graph-like 

Bayesian network architecture, which creates new 

opportunities for the integration of multiscale and 

multimodal data to find additional potential 

mechanistic biomarkers. Additionally, 

longitudinal patient data may be used to extract 

information regarding illness development to 

improve the precision of future forecasts. For 

instance, Bhagwat et al. (2018) used longitudinal 

data from MRI brain volumetry (cortical 

thickness), clinical evaluations, and genetic 

information (ApoE 4 status) to estimate the 

progression of AD illness in patients with variable 

baseline cognitive ability. Even after being 

validated with a second untrained data set, a 

longitudinal predictive neural-network 

outperformed other algorithms when tested on 

multimodal data from two time points (Bhagwat et 

al., 2018). This multimodal, longitudinal method 

to forecasting individual risk and disease 

trajectories may thus open up new, exciting 

possibilities for customised therapy. Modeling 

structural and metabolic changes in various brain 

regions in relation to the deterioration of cognitive 

abilities can provide more complex information on 

the course of the disease and the factors that 

influence it on an individual level (Koval et al., 

2018). The European Brain Research 

Infrastructures (EBRAINS) of the Human Brain 

Project (https:// ebrains.eu, Markram et al., 2011), 

a graph-theoretically organised database, is one 

example of a data source that might be included 

into future techniques. Palomero-Gallagher and 

Zilles (2018) note that EBRAINS has 

comprehensive data for several brain regions from 

a number of modalities, such as receptor density 
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or gene expressions (Yetman et al., 2016). In 

addition, the Multimodal Mechanistic Signatures 

Database for Neurodegenerative Diseases 

(NeuroMMSig; Domingo-Fernández et al., 2017) 

offers considerable promise for mechanistic 

models. A mechanistic pathway representation of 

AD is created by combining chemical substances, 

genes, proteins, medical terminology, and imaging 

data in NeuroMMSig, a hierarchically structured 

ontology. These pathways, which are causal 

chains of biological ideas or processes, were 

found using literature mining techniques and 

distilled into 125 sub-networks that each have a 

unique function in the pathophysiology of AD 

(Domingo-Fernández et al., 2017). Promising new 

techniques for the forecasts of individual illness 

trajectories using mechanistic cause-and-effect 

models are offered by merging large databases 

like those outlined. 

 

Cellular-level models 

For computer modelling that relies on protein 

interaction and gene expression, sub-cellular 

characteristics of AD offer interesting input. Early 

AD modelling efforts, for instance, concentrated 

on the Abeta deposition process (Jarrett et al., 

1993; Lomakin et al., 1997; Pallitto and Murphy, 

2001; Ortega et al., 2013). Additionally, 

biochemical models take into consideration 

potential therapies along the course of the illness 

as well as interactions between several variables 

including Abeta, Tau, inflammation, and other 

proteases (Proctor and Gray, 2010; Anastasio, 

2013, 2014; Kyrtsos and Baras, 2013; Proctor et 

al., 2013). Early research evaluated the 

aggregation kinetics of artificial Abeta-like 

peptides using computer modelling (Tomski and 

Murphy, 1992). A mathematical description of the 

aggregation process—as the temporal 

development of Abeta in the form of monomers, 

micelles, and fibrils—was made possible by 

comparably straightforward biological models 

(Lomakin et al., 1997). The Abeta aggregation 

hypothesis was further improved by incorporating 

more thorough interactions between various Abeta 

fibril types and adapting the model to empirical 

evidence (Pallitto and Murphy, 2001). A specific 

model that represents impaired Ca2+ homeostasis 

and Abeta aggregation as a positive feedback loop 

and their interaction in a vicious circle was 

devised as experimental evidence of Abeta's 

toxicity grew (De Caluwé et Dupont, 2013). More 

detailed models have been developed over the past 

ten years, and now incorporate genetic risk 

factors, potential therapeutic options, and 

connections between AD and crucial gene 

transcription factors like p53 (Proctor and Gray, 

2010; Proctor et al., 2013). (Kyrtsos and Baras, 

2013). Sub-cellular modelling ideas are helpful for 

merging multiscale models because they clearly 

define the molecular characteristics of AD from a 

computational standpoint. Computational 

linguistics and semantic frameworks can be used 

to "code" molecular pathways as a network of 

relationships. The Biological Expression 

Language (BEL), which enables the use of first-

order logic to describe the interactions between 

proteins, genes, and other chemical molecules, is 

one potential tool for this method (Madan et al., 

2019). 

Models of a single neuron and a neural circuit 

Aside from the subcellular level, AD models may 

be applied to a variety of tiny sizes, from single 

cells to brain circuits (Morse et al., 2010; Romani 

et al., 2013; Bianchi et al., 2014; Perez et al., 

2016). (Zou et al., 2011; Abuhassan et al., 2012; 

Bianchi et al., 2014; Rowan et al., 2014). In an 

effort to replicate the observed data, single-neuron 

models are frequently motivated by an 

experimental strategy, such as a patch-clamp 

experiment (Chen, 2005). (Morse et al., 2010). 

These single-cell simulations' underlying 

mathematics may make use of more generic 

formulations for brain oscillation models, as with 

the Hodgkin-Huxley model (Hodgkin and Huxley, 

1952). In a model of a neuron, Hodgkin and 

Huxley provided the first influential mathematical 

description in 1952. (Hodgkin and Huxley, 1952). 

The Hodgkin-Huxley model is based on research 

records made on the axons of squid: It makes it 

possible to approximate membrane potentials over 

time realistically by specifying the capacitance of 

the phospholipid membrane and the conductance 

of leak and voltage-gated ion channels (Hodgkin 

and Huxley, 1952). The model, however, requires 

a lot of processing, making it best suited for 
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simulations with a limited number of neurons or a 

short simulation time (Izhikevich, 2004). Models 

like those proposed by Hodgkin and Huxley 

(1952), Morris and Lecar (1981), Rose and 

Hindmarsh (1989), and Wilson (1999) that are 

biologically realistic yet relatively inefficient 

seem to be caught in a catch-22 since they only 

suggest a small number of alternative behaviours 

(e.g., the integrate-and-fire or integrate-and-fire-

or-burst model; Smith et al., 2000; Izhikevich, 

2004). Izhikevich offered a computationally 

effective model that could create emergent 

biological phenomena like as tonic and phasic 

spiking and bursting, frequency adaptation, and 

accommodation as a potential solution 

(Izhikevich, 2003, 2004). The mean-field theory 

may incorporate intricate neural networks with 

many neurons (Spiegler et al., 2011). The use of 

the mean field to explain fluid or gas dynamics 

without taking individual molecules into account 

has its roots in physics. It permits simplification of 

a geographically different set of neurons with a 

similar function in the brain (Liley et al., 2002). 

The term "neural mass" refers to a collection of 

neurons that can be characterised on several 

spatial scales, such as a brain area, a column, or a 

neuronal ensemble. A large-scale brain network 

model has frequently employed neural mass 

models to specify local dynamics (Wilson and 

Cowan, 1972; Zetterberg et al., 1978; Hindmarsh 

and Rose, 1984; Jansen and Rit, 1995; Wong and 

Wang, 2006; Stefanescu and Jirsa, 2008; Sanz-

Leon et al., 2015).  

Brain Network Models At A Large Scale: 

Over the past ten years, large-scale computer brain 

modelling has advanced more quickly. In order to 

test the idea that excessive brain activity causes 

neurodegeneration, de Haan et al. (2012) 

developed a model. The neural mass model by 

Zetterberg et al. (1978) is each network node's 

local dynamic model in this model, which is a 

large-scale brain network generated from 

diffusion MRI. The synaptic strength as a function 

of brain activity across time was condensed by De 

Haan and colleagues (de Haan et al., 2012). As a 

result, after a while, the links that were sending 

more activity started to degrade. This particular 

pathway was used to characterise a kind of 

excitotoxicity that causes degeneration. Here, 

using graph-theoretical measurements, one could 

successively see degradation in the functional and 

structural network topology over time. Hubs, 

which are classified as densely linked brain areas 

(through incoming and outgoing links), also 

showed a decrease of spectral power and an 

increase in sensitivity, according to the scientists 

(de Haan et al., 2012). According to the authors' 

observations, the model's increased brain activity 

and functional connections are consistent with real 

data from MCI or moderate stages of AD (de 

Haan et al., 2012). In a later investigation, de 

Haan et al. (2017) experimented with several 

"therapeutic" ways to stop neurodegeneration in 

the excitotoxic model, such as modifying the 

excitability of the excitatory and inhibitory 

subpopulations of the neuronal masses. The most 

effective method for maintaining healthy network 

characteristics over an extended period of time 

was raising excitability of excitatory neurons and 

then increasing inhibition of inhibitory neurons. 

This can appear paradoxical at first, but it implies 

that hyperexcitability can be reversed by 

increasing either excitation or decreasing 

inhibition. The authors hypothesised that the 

network architecture could be to blame for this 

phenomena. The most effective tactics stifle 

network hub activity, which may in turn slow the 

spread of illness. This hypothesis postulates that 

neurodegeneration propagates through network 

architecture as a sort of "pro-degenerative" 

signalling pattern. This is connected to a previous 

account of Hasselmo in 1994. The spatiotemporal 

pattern of disease progression along significant 

fibre tracts, early memory deficits, and 

neurodegeneration brought on by excessive 

demands on synaptic plasticity rather than 

excitotoxicity can all be explained by this model 

(Hasselmo, 1994), which offers a descriptive 

model of runaway synaptic modification, learning, 

and cholinergic suppression. The Hasselmo model 

(Hasselmo, 1994) explains an earlier stage of the 

same process, where hyperactivation induces 

undesirable neuroplasticity through extensive 

runaway synaptic modification and through this 

mechanism results in neurodegeneration. This is 

in contrast to the work by de Haan et al. (2012), 

which assumes that neurodegeneration is a 
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consequence of hyperactivation. The neural mass 

model of Jansen and Rit (1995), which is 

connected to the Zetterberg model, was used at 

each node of the cortical network by Pons and 

colleagues in their other brain network model for 

AD (Pons et al., 2010). (Zetterberg et al., 1978). 

The electroencephalography recordings utilised by 

the authors demonstrated a slowing of the alpha 

rhythm and an increase in functional connectivity 

(measured by the phase lag index) in MCI patients 

as they aged, i.e., functional connectivity 

increased from young to elderly participants. In 

their simulations, Pons et al. were able to explain 

these data by lowering the maximal postsynaptic 

potential and raising the thalamocortical SCs. 

Demirtas and colleagues examined the blood-

oxygen-level-dependent (BOLD) signal 

alterations brought on by AD in another recent 

modelling work (Demirtas et al., 2017). There 

were 109 participants in this study from various 

categories (healthy controls, preclinical AD, MCI, 

and AD). Regarding their empirical BOLD signal, 

it was possible to see a decline in global 

interactions of AD patients when evaluating first-

order circular statistics, or in the Kuramoto order 

parameter, as well as regional variations in the 

strengths of the functional connectivity, in 

comparison to controls (Demirta's et al., 2017). 

Additionally, variations in functional connectivity 

were linked to Abeta, total Tau, and phospho-Tau 

levels in cerebrospinal fluid (Demirtas et al., 

2017). The brain model may mimic these 

observed changes by estimating individual 

effective connectivity using subject-specific 

structural connectivity and functional connectivity 

using a heuristic method (Demirtas et al., 2017). 

Its local dynamics were represented by a 

supercritical Andronov-Hopf bifurcation. 

Demirtas et al. systematically changed the model's 

order parameter in an in silico experiment 

employing brain network models based on the 

effective connectivity of healthy people (Demirtas 

et al., 2017). They were able to track the 

development of functional connection degradation 

in this way. For each illness stage and group, an 

ideal order parameter was identified that best 

replicated the degeneration that had been 

empirically observed. This study demonstrated 

how changes in regional dynamics might cause 

activity within the anatomically large-scale brain 

network to fragment. Additionally, simulations 

confirmed the observation that the interaction 

between BOLD signals decreases with illness 

development as shown by the Kuramoto order 

parameter. 

 

Platform for the virtual brain: 

In the sections that follow, we concentrate on The 

Virtual Brain, a multimodal and multiscale virtual 

brain simulation framework that has the potential 

to integrate various modelling scales of AD 

research (Ritter et al., 2013; Sanz Leon et al., 

2013; Sanz-Leon et al., 2015; Stefanovski et al., 

2016; Solodkin et al., 2018). The Virtual Brain's 

open-source platform is accessible at 

www.thevirtualbrain.org. The Virtual Brain is a 

standardised and well-established framework that 

permits large-scale modelling techniques on 

individual patient data, encompassing a variety of 

underlying dynamics (as indicated in the 

preceding section, Large-scale Brain Network 

Models). The structural connectome serves as the 

foundation for the Virtual Brain (Sanz-Leon et al., 

2015). The majority of the neural mass models 

used in The Virtual Brain—which depict regional 

activity—had their roots in network models for 

smaller, more distinct networks. However, as 

connectomics evolved, the included networks 

became more intricate and complicated 

(Dipasquale and Cercignani, 2016). In The Virtual 

Brain, smaller or even single-neuron systems were 

employed to create the local dynamic models 

(Wilson and Cowan, 1972; Zetterberg et al., 1978; 

Hindmarsh and Rose, 1984; Jansen and Rit, 1995; 

Wong and Wang, 2006; Stefanescu and Jirsa, 

2008; Sanz-Leon et al., 2015). The Virtual Brain 

can model and simulate distinct subnetworks 

spanning from a regional level to a few neurons, 

although it was developed to replicate whole-brain 

network dynamics (see Spiegler and Jirsa, 2013). 

The multiscale aspect of The Virtual Brain is its 

second crucial component that can help with AD 

research. This term was developed to describe the 

fluid transition between the various brain scales, 

from the macroscale, where long-range 

connections between brain regions allow for intra- 

and inter-hemispheric interaction, to the 

microscale, where countless single neurons are 
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present and their electrophysiological 

characteristics, receptors, transmitters, locations 

within cortical layers, etc. are known. While 

measurements at the microscale are more focused 

on cell membranes and structures but are unable to 

sample a full human brain, measurements at the 

macroscale provide information on individual 

brains. The Virtual Brain idea takes into account 

both scales: on the one hand, the scaffold of The 

Virtual Brain is the structural connection of the 

entire brain, and on the other hand, the neural 

properties are represented in local dynamic 

models and their biophysiological parameters 

(e.g., the Jansen-Rit model). Both modelling the 

complete brain based on every single neuron and 

modelling the large-scale brain alone could not 

include microscopical components. As a result, 

the mesoscale has been formed and is made up of 

many components (Deco et al., 2008; Wright and 

Liley, 2010). First of all, nearby electromagnetic 

fields have a direct bearing on one another. 

Additionally, there are neural masses, which can 

either cover the neuronal mass in a voxel captured 

by an MRI scanner or the anatomical area of a 

functional region. They may relate to interactions 

between excitatory and inhibitory populations as 

well as through the connectome, a large-scale 

network connecting distant areas, depending on 

the brain mass model. This small circuitry's 

interaction with the larger brain network can result 

in widespread, physiologically realistic brain 

activity (Honey et al., 2007; Ghosh et al., 2008; 

Sotero and Trujillo-Barreto, 2008; Bojak et al., 

2010; Jirsa et al., 2010; Ritter et al., 2013; Sanz-

Leon et al., 2015; Kunze et al., 2016). Clinical 

applications and consequent technologies may 

benefit from and expand on theoretical and 

computational predictions, as The Virtual Brain 

has already demonstrated success in epileptic 

surgery. The Virtual Brain is an integrative 

research platform (Jirsa et al., 2017; Proix et al., 

2017). The Virtual Brain has already been utilised 

for a variety of research topics, including the 

modelling of physiological brain phenomena in 

healthy participants (Ritter et al., 2013; Sanz Leon 

et al., 2013; Spiegler and Jirsa, 2013; Roy et al., 

2014); mouse brain models (Melozzi et al., 2017); 

clinical approaches of AD (Zimmermann et al., 

2018; Stefanovski et al., 2019); (Aerts et al., 

2018). In a research, Zimmermann et al. used The 

Virtual Brain to simulate Alzheimer's 

(Zimmermann et al., 2018). The authors were able 

to demonstrate a statistically significant link 

between the cognitive status of AD patients and 

the fitted model parameters of The Virtual Brain 

by fitting the model to predict individual 

functional connectivity from the underlying 

structural connectivity (Zimmermann et al., 2018). 

This allows for the non-invasive assessment of 

intrinsic brain properties since the parameters 

serve as substitutes for biophysically significant 

entities like long-range coupling factors and local 

interactions between inhibitory and excitatory 

neuronal populations. Multimodal data for the 

study of AD can comprise, for instance, structural 

connectivity from diffusion tensor imaging, 

anatomical MRI, and PET imaging data of glucose 

metabolism, amyloid, and tau. One of these 

characteristics, Abeta PET, was employed in our 

prior work (Stefanovski et al., 2019), which 

examined the processes behind the slowing of 

electroencephalography, another well-known AD 

symptom (Stefanovski et al., 2019). We modelled 

local Abeta-mediated hyperexcitability utilising 

brain network modelling with The Virtual Brain 

as a pilot research in the field of molecularly-

driven large-scale brain simulations, where 

regional Abeta load was acquired from PET data. 

Fundamental differences between AD patients and 

controls were found by characterising the local 

excitation-inhibition balance as a function of local 

Abeta load from PET. We demonstrated that a few 

areas with a moderate or high Abeta load are 

switched into a different dynamic state, resulting 

in slower activity oscillations. The major 

manifestation of this slowdown is a change in 

rhythm from alpha to theta. It spread over the 

whole network and concentrated on the hubs. It's 

interesting to note that local hyperexcitation also 

occurred in the network's core areas. As a result, 

we were able to identify a potential 

pathomechanism for the electroencephalographic 

slowing in AD utilising this technique 

(Stefanovski et al., 2019). 

 

Conclusions and Suggested Further Research: 
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Although our understanding of the mechanisms 

that contribute to AD pathogenesis expands, it 

remains a significant challenge for neuroscience to 

comprehend their unique significance and 

interplay. Additionally, clinical research is being 

translated slowly. The objective should be to 

combine multiscale information to show complex 

relationships underlying AD rather than 

examining separate processes (Hofmann-Apitius 

et al., 2015; Iyappan et al., 2016). When a disease-

modifying therapy for degenerative dementia 

becomes available, it must most likely be started 

several years before the disease's clinical and 

behavioural symptoms appear. This is because 

pathways in the brain start to shift decades before 

dementia manifests and cause permanent neuronal 

loss. However, one should be prepared with the 

fact that such a treatment may need to be used for 

many years and may have serious bad effects. 

High screening sensitivity and diagnostic 

specificity will thus be of utmost significance. 

Furthermore, individual biomarker profiles of 

patients' "fingerprints" are the sole way to conduct 

future trends of tailored therapies. As an 

illustration, recent research has demonstrated that 

the multimodal dataset from the Alzheimer's 

Disease Neuroimaging Database (ADNI) may 

predict the gene expression pattern (as a 

prospective individual therapeutic target) better 

than the clinical presentation does (Iturria-Medina 

et al., 2018). It will be possible to explain 

situations that initially seem out of the ordinary 

with a more accurate AD diagnosis. Prospective 

therapies may help identify some etiologies. 

Additionally, in the future, subtypes of disease 

entities that are now included under AD may be 

created and evaluated using a particular therapy, 

such as immunosuppression for autoimmune 

phenomena or anti-Abeta medications for early-

onset AD. The appropriate population must be 

chosen. Too many patients with various illness 

reasons, where the therapy has no impact, might 

lead probable consequences to be superimposed if 

the diagnosis is not precise enough. The use of 

biomarkers to track treatment effects in research 

settings is advantageous because the disease's 

clinical trajectories are sluggish and difficult to 

evaluate objectively. Future research utilising 

computer models for multiscale brain simulations 

may result in better early detection of dementia, 

more accurate prognostic prediction, and 

differential diagnosis, which are the cornerstones 

of rational medical treatment of AD patients. 
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