Molecular identification of *Candida glabrata* and *C. parapsilosis* based on sequencing analysis of rDNA

Zaidan Khlaif Imran* and Enas Khatham Ali

Biology Department, All Women College of Science, Babylon University, Hilla, Iraq

*Corresponded author: Zaidan Khlaif Imran
E.mail: zaidan_omran@yahoo.com ; zaidanomran62@gmail.com

Abstract:
The taxonomy of the most Candida species especially *C. parapsilosis* and *C. glabrata* have undergone changes due to confuse in some taxonomic characters such as their color on CHROMagar and biochemical properties compare with accurate molecular method. The aim of this study was to evaluate the feasibility of using sequencing of the ribosomal internal transcribed spacer (ITS) region for identification of 18 Candida isolates. Preliminary CHROMagar assay and amplified ITS regions by primer pair ITS1/ITS4 and sequenced. Species identification performed based on the results of sequences which comparison by BLAST searches for homologous sequences in public databases. The CHROMagar assay showed confuse in colonies colors of both species revealed white-pink color for both species. The results of PCR assay, rDNA sequences analysis and phylogenetic analyses showed accurate methods for identification of both species. Significant variation was observed among PCR products for 23 Candida species: 511 bp for *C. parapsilosis* 720 bp for *C. kifer* and 780 bp for *C. glabrata*. Sequence analysis show variation between *C. glabrata* and *C. parapsilosis* and phylogenetic analyses produced different tree relatives to analyses with consensus sequences. In conclusion, the CHROMagar candida medium unreliable test, showed high similarity in their color (white – pink color) characters for both *C. parapsilosis* and *C. glabrata*, while the results of ITS sequencing provides a very accurate and useful method for the identification of Candida species in general trend, and *C. parapsilosis* and *C. glabrata* were showed distinct species based on sequences of ITS (rDNA).

Keywords: *Candida glabrata*, *Candida parapsilosis*, PCR, rDNA sequencing, phylogenetic analyses

INTRODUCTION

The genus *Candida* contains heterogeneous anamorphic yeasts and comprises about 196-200 species (Murray et al. 1995). The more important pathogenic species, *Candida albicans*, *C. parapsilosis*, *C. krusei*, and *C. glabrata*, are phylogenetically related to the Ascomycetes.

CHROMagar medium have been manufactured to distinguish common *Candida* species on the basis of the colonies color (Murray et al., 2005). Its support relatively specific colony colors for *Candida albicans*, *C. tropicalis*, and *C. krusei* but not with other *Candida* species such as *C. glabrata* and *C. parapsilosis*, many investigators exaggerated the important of CHROMagar Candida media as comparably high sensitivity medium (Nadeem et al., 2010). Recently many reports showed that CHROMagar Candida media insufficient test for identification of *C. albicans* and subspecies *C. dublinensis* isolates (Imran, 2015). And also couldn't identify *C. glabrata* or *C. parapsilosis* (Baumgartner et al., 1996; Pfaller et al., 1996; Powell et al., 1998). Many *Candida* species produce white to pink colonies on CHROMagar (Imran and Al-Asadi, 2014). Recently observed that *C. glabrata* clade included more than species were defined molecularly (Alcoba-Florez et al., 2005, Correia et al., 2006).

Using the CHROMagar Candida in which *C. glabrata* colonies appear pink to purple although rare, some *C. glabrata* strains that formed white colonies on this medium have also been described (Bishop et al., 2008). In fact, in 2005, a group of Spanish researchers isolated three fungal strains from different clinical specimens and although these yeasts were initially identified as *C. glabrata* by the ID 32C kit, subsequent molecular analysis demonstrated that they belonged to a new *Candida* species (called *Candida nivariensis*) phenotypically and genetically related to *C. glabrata* (Alcoba-Flórez et al., 2005). However, the lack of a wide range of colors limits the expansion to more yeast species, and the increased cost of CHROMagar beside confuses results. All these justifications made CHROMagar Candida medium unreadable test has been widely used for initial screening of large *C. glabrata* culture collections on the basis of the white color of their colonies (Bishop et al., 2008; Borman et al., 2008). Moreover, colonies of these...
three species (C. parapsilosis, C. orthopsilosis and C. metapsilosis) typically appear white on CHROMagar Candida (Tavanti et al., 2005) but, a very recent report described the environmental isolation of two C. orthopsilosis strains that showed a pink pigmentation on this medium (Robll et al., 2014) and they may, therefore, be confused with C. glabrata (Silva et al., 2012).

The phenotypic analysis methods currently used for diagnosis C. parapsilosis cannot discriminate it at species level among the “psilosis complex”, since C. parapsilosis, C. orthopsilosis and C. metapsilosis show the same cellular morphologies, growth characteristics, biochemical assimilation and fermentation profiles (Tavanti et al., 2005). Owing to the importance of C. glabrata and the need for better understanding of its epidemiology, new molecular techniques have been developed to provide strain characteristics (Bretagne et al., 1997; Soll, 2000).

Given the increase in C. glabrata infections and their public health importance In particular C. glabrata has emerged as a major cause of mucosal and invasive fungal infection in the United States, second only to C. albicans (Wisplinghoff et al., 2004), there is a need to develop reliable molecular tools for species delineation (Guarro et al., 1999). The present study is the first to utilize this approach to identify close related Candida species with C. glabrata, the results showed that ITS region polymorphisms were useful for Candida species identification (Aanen et al., 2001).

Amplified of rDNA is being used for typing of many fungal pathogens (Tamura et al., 2001; Imran and Al-Asadi, 2015). Therefore, the right time to assess the potential contribution that other molecular techniques could make towards the identification of the relationships between C. glabrata and C. parapsilosis.

The aim of this study was evaluate the CHROMagar assay for differentiation between C. glabrata and C. parapsilosis, and achieve a detailed and unequivocal understanding of the evolutionary relation-ships between them, by performing simple PCR, and emphasizing the identification of genotype variations for both C. glabrata and C. parapsilosis by using the sequencing analysis and supporting BioEdit software and constructed Neighboring Joining (NJ) dendrogram.

MATERIALS AND METHODS

1-Samples collection

A total of 150 swabs samples were collected from different areas of the patient’s bodies viz., eye swabs, skin swabs, buckle swabs, bloody santé pads, vaginal swabs and soil samples. Clinical samples using a sterile cotton swabs were taken from body sites and infection sites of different patients hospitalized in Al Surgery hospital Hilla city in Iraq, samples collection followed Imran and Al. shukry (2014).

2-Identification of Candida isolates

Each swabs samples were submerged in 600 μl sterile water with Tween 20 for made suspension , a loop full of suspension were streaked on both CHROMagar plates and Sabouraud’s Dextrose Agar (SDA). Incubated under standard condition (Tavanti et al., 2005), and then selected only single colonies showed pink and white-pink, purple color only (in this study was excluded all C. albicans C.tropicalis and C.krusea based on colonies color on CHROMagar) The C.glabrata and C.parapsilosis were selected because no visible variation was observed in the CHROMagar assay ,they showed white to white pink colors.

2-DNA extraction:

The DNA template extraction was performed according to Imran (2015). Loop full from single colony of Candida spp growing on SDA for 24 h was pick up into 600μl of cell lysis buffer and the vortex for two minutes ,added 200 μl nuclear lysis buffer with 20 μl protease K and incubated for one hour at 55°C ,then added 100 μl of protein precipitate, mixed gently and incubate in refrigerator for ten minutes ,centrifuged for 1mint at 5000 rpm. Discharged the supernatant into new tube and added 500 μl phenol-chlorphorm and vortexed for one minute. and centrifuged 5000rpm for 2 minutes. Discharged upper layer into new tube ,500 μl isopropanol was added, mixed gently for 2 minute and centrifuged for 10 minute at 12000 rpm. discharged the isopropanol and rinse the pellet containing DNA with 70% ethanol and dry the DNA pellet .70 μl of TE for dissolve the DNA pellet. It was air dried; pellets were re-suspended with 100 μl TE and frozen at -20°C until use (Imran, 2015).

3-PCR and sequencing assays

PCR assay was performed the following condition : The primer pair that targeted the sequences site of the ITS1-5.8S-ITS2 gene was ITS1/ITS4(White et al., 1990) for amplify the rDNA of isolates under our interest . The PCR mixture (25 μl) consisted of 12.5 μl of 20x Master Mix (Promega), 2 μl (10 pemole) of each primer and 1 μl template DNA, made up to 25 μl with molecular-grade water. The PCR mixture was amplified by the thermal cycler PCR System (Labnet, USA) .initial denaturation temperature 95°C for 5 min, , 30 cycles, 95°C for 30 sec , annealing temperature of 58°C for 1.5 min , extension temperature of 72°C for 1 min ,final extension temperature 72°C for 10 min ,cool step by 4 °C (Imran, 2015).

23 PCR products for Candida species were sent to Macrogen Laboratory in UAS and the received the sequences data for different Candida species . Prior to the sequencing reaction. The sequencing results were subjected
for alignment based on blast NCBI database. The sequence alignment were performed by BioEdit software.

4-Phylogeny tree

The phylogeny tree of eighteen Candida spp species was instructed based on Mega6 software.

Results and Discussion

1- Isolation and Identification

A total of 1150 Candida colonies they showed white to white pink colors on CHROMagar out of 3354 yeast colonies were isolated from clinical samples and 25 Candida colonies out of 70 yeast colonies collected from soil samples. Others yeasts included C.albicans, C.krusei and Rhodotorula were excluded. The distribution of these isolates according to their sites of recovery was summarized in Table 1. Our results was coincidence with previous studies of Momani, (2000).

Table 1: Distribution of these isolates according to their sites of recovery

<table>
<thead>
<tr>
<th>Source of sample</th>
<th>No. of sample</th>
<th>No. of Candida spp</th>
<th>Type of Candida spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye swab</td>
<td>20</td>
<td>41</td>
<td>CG,CP*</td>
</tr>
<tr>
<td>Vaginal swab</td>
<td>15</td>
<td>283</td>
<td>CG, CK, CP</td>
</tr>
<tr>
<td>Buckle swab</td>
<td>35</td>
<td>266</td>
<td>CG, CP, CK</td>
</tr>
<tr>
<td>Skin swab</td>
<td>30</td>
<td>370</td>
<td>CG, CK, CP</td>
</tr>
<tr>
<td>Blood of pads</td>
<td>15</td>
<td>165</td>
<td>CG, CP, CK</td>
</tr>
<tr>
<td>Soil samples</td>
<td>35</td>
<td>25</td>
<td>CG, CK</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>1150</td>
<td></td>
</tr>
</tbody>
</table>

*CG : Candida glabrata ;CP : Candida parapsilosis ;CK : Candida kefyr

2-CHROMagar assay

The results of this test showed different colonies colors(C. albicans colony showed green color, C. tropicalis blue colony color, C. krusei showed pink color) on the CHROMagar medium, but on the SDA these Candida spp showed white-creamy to brown –creamy color. Black arrow refer to C.albicans (CA) While the blue arrow refer to C.kefyr (CK) that are creamy on SDA medium(Figure 1).

Our results agree with those of Paritpokke et al. (2005) and Nadeem et al. (2010).

Figure (1): Appearance of colonies of Candida spp. on both of SDA and CHROMagar media. Black arrow refer to C.albicans (CA) While the blue arrow refer to K. marxianus (anamorph C.kefyr) that are creamy on SDA medium.

K. marxianus (anamorph C.kefyr) exhibited a pale pink on CHROMagar medium and this result is similar to those reported by Rodrigues et al. (2001). C.glabrata and C. parapsilosis exhibited variety of colors on CHROMagar medium ranged from white to whitish purple or pale pink (Figure 2). Our result coincidence with those of Madhavan et al.(2011).

Figure (2): Appearance of C.parapsilosis and C.glabrata colonies on CHROMagar incubation period for 24 h at 30°C.
Both C. parapsilosis (CP) and C. glabrata (CG) showed a range of color from white to white-pink. Our results agree with those of Agrawal et al. (2008). Elongation of incubation period led to a change in the color of the colonies, which became more prominent with time. Candida colonies on CHROMagar medium under different incubation periods (24 h, 48 h, and 72 h). Figure (4) shows these color changes reduce the efficiency of this medium for diagnosis and make it not a reliable tool for diagnosis 100% for Candida spp. Our results coincide with Imran (2015).

A-PCR assay

The results showed different molecular sizes of PCR products of Candida spp. Amplified the ITS region of 23 isolates (Table 1) by universal primers ITS1/ITS4. These isolates were between 511-780 bp. Figure (4).

Figure (4): Agarose gel electrophoresis of PCR products for Candida species isolates amplified by pair primers ITS1/ITS4. Lane M= Molecular marker 100 bp; lanes 1-8 isolates of C. parapsilosis isolates (511 bp), lanes 9-12, 19, 21, 23 isolates of C. glabrata (879 bp), lanes 13-18, 22 K. marxianus isolates (720 bp), molecular weight key based on Fujita et al. (2001).

B-Sequence analysis

A total of 18 PCR products out of 23 PCR products of Candida under interest were succeeded in sequencing analysis. High sequence similarities were observed in the ITS between C. glabrata (99–100% similarities) and (94–100% similarities) among isolates of C. parapsilosis few intraspecific variation in the ITS region was found in all Candida spp under our interest that were sequenced. About 1-5 nucleotide (Nts) similar between C. glabrata and C. parapsilosis labeled be rectangles (Figure 5). High sequence similarities were observed in the ITS region between Candida spp (97% similarities) and distancing itself from the species C. parapsilosis (93% similarities) (Figure 5).
Figure (5): Selected partial sequence alignment of ITS regions. The sequences of two species of Candida spp were aligned by using the Clustal W computer programs. C. glabrata (4 isolates) C. parapsilosis (7 isolates) respectively. About 1-5 of the nucleotide sequence similar between C. glabrata and C. parapsilosis labeled by rectangles.

C-Phylogeny tree:
Neighboring Joining (NJ) tree of 18 Candida spp on the basis of their ITS1 sequences was constructed with data for standard strains of Candida species four clusters of Candida spp. Were observed C. parapsilosis showed in cluster 1, C. intermediana in cluster 2, Kluyveromyces marxianus in cluster 3 and C. glabrata in cluster 4 while C. pararugosa showed out of the other clusters.

Figure (6): Phylogeny tree for 18 Candida species constructed by Neighboring Joining (NJ) tree based on ITS1-5.8S-ITS2 gene sequences, identification of for 18 Candida isolates species into four clusters.
Recently, sequencing analysis based on the ITS1-5.8S-ITS2 gene region showed a high taxonomic cohesiveness for 18 Candida isolates commonly found within clinical specimens, this results agree with Broge et al. (2005). In the current study, the dendogram of ITS1-5.8S-ITS2 of 18 isolates of Candida isolates from different clinical specimens (e.g., eye swabs, skin swabs, buckle swabs, bloody santé pads, vaginal swabs) generated 4 clusters, which were identified as in (Figure 6). Although the NJ tree based on ITS1-5.8S-ITS2 observation suggests that isolates of Candida isolates did not yield a single genotype but very close no identical populations. In our study, the maximum intraspecific evolutionary divergence between C. parapsilosis isolates 1 and 2.

Table 1. Distance matrix between the ITS rDNA sequences of 18 isolates of clinical swabs. Below the diagonal are the absolute distances corresponding to the number of divergent bases. Above the diagonal are the percentages of different bases in relation to the total number of bases sequenced.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Candida glabrata 1</td>
<td></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2. Candida glabrata 2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>3. Candida glabrata 3</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4. Candida glabrata 4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>5. Candida intermedia 1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6. C. parapsilosis</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>7. C. tropicalis</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>8. C. glabrata</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>9. C. parapsilosis</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>10. C. albicans</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. C. parapsilosis</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. C. parapsilosis</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. C. parapsilosis</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Kluyveromyces marxianus 1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Kluyveromyces marxianus 2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Kluyveromyces marxianus 3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Kluyveromyces marxianus 4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Kluyveromyces marxianus 1391332311</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Most of Candida species showed similar size PCR products of amplified ITS region, sometimes may not easily observed the variation in the size of PCR products, in this case we in need for sequence analysis of these PCR products for detects the intraspecific variation or microevolution in the genome under interest. Sequence similarity appears to remove all PCR method-based ITS variation. However some of this microvariation in fact might be real, a result observed by Simon and Weiss (2008) in four Ascomycota species to determine whether the microvariation observed in this study. Some of difference sequences were observed in this study were significantly greater than 5% different from the consensus. Our study Agree with Lindner and Banik. (2011).

In conclusion, the CHROMagar candida medium unreliable test, showed high similarity in their color (white – pink color) characters for both C. parapsilosis and C. glabrata, while the results of ITS sequencing provides a very accurate and useful method for the identification of Candida species in general trend, and C. parapsilosis and C. glabrata were showed distinct species based on sequences of ITS (rDNA).

REFERENCES

Cite As: Molecular identification of Candida glabrata and C. parapsilosis based on sequencing analysis of rDNA; Vol. 2|Issue 12|Pg:1490-1497

